Dense Subgroups of Compact Groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Dense Free Subgroups of Lie Groups

We give a method for constructing dense and free subgroups in real Lie groups. In particular we show that any dense subgroup of a connected semisimple real Lie group G contains a free group on two generators which is still dense in G, and that any finitely generated dense subgroup in a connected non-solvable Lie group H contains a dense free subgroup of rank ≤ 2 · dimH . As an application, we o...

متن کامل

Characterizing Subgroups of Compact Abelian Groups

We prove that every countable subgroup of a compact metrizable abelian group has a characterizing set. As an application, we answer several questions on maximally almost periodic (MAP) groups and give a characterization of the class of (necessarily MAP) abelian topological groups whose Bohr topology has countable pseudocharacter.

متن کامل

Conjugately Dense Subgroups in Generalized Fc-groups

A subgroup H of a group G is called conjugately dense in G if H has nonempty intersection with each class of conjugate elements in G. The knowledge of conjugately dense subgroups is related with an unsolved problem in group theory, as testified in the Kourovka Notebook. Here we point out the role of conjugately dense subgroups in generalized FC-groups, generalized soluble groups and generalized...

متن کامل

Equidistribution of Dense Subgroups on Nilpotent Lie Groups

Let Γ be a dense subgroup of a simply connected nilpotent Lie group G generated by a finite symmetric set S. We consider the n-ball Sn for the word metric induced by S on Γ. We show that Sn (with uniform measure) becomes equidistributed on G with respect to the Haar measure as n tends to infinity. We also prove the analogous result for random walk averages.

متن کامل

Arithmetically defined dense subgroups of Morava stabilizer groups

For every prime p and integer n > 3 we explicitly construct an abelian variety A/Fpn of dimension n such that for a suitable prime l the group of quasi-isogenies of A/Fpn of l-power degree is canonically a dense subgroup of the n-th Morava stabilizer group at p. We also give a variant of this result taking into account a polarization. This is motivated by the recent construction of topological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1971

ISSN: 0002-9939

DOI: 10.2307/2038014